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Abstract: This paper presents the effect of the high voltage direct current (HVDC) transmission system 

based on voltage source converter (VSC) on the sub synchronous resonance (SSR) and low frequency 

oscillations (LFO) in power system. A novel adaptive neural controller based on neural identifier is 

proposed for the HVDC which is capable of damping out LFO and sub synchronous oscillations (SSO). 

For comparison purposes, results of system based damping neural controller are compared with a lead-lag 

controller based on quantum particle swarm optimization (QPSO). It is shown that Implementing adaptive 

damping controller not only improve stability of power system but also can overcome drawbacks of 

conventional compensators with fixed parameters. In order to determine the most effective input of HVDC 

system to apply supplementary controller signal, analysis based on singular value decomposition is 

performed. To evaluate the performance of the proposed controller, transient simulations of detailed 

nonlinear system are considered.  

Keywords: Synchronous Resonance, Neural Network Damping Controller, Quantum Particle Swarm 

Optimization, HVDC Transmission Systems, Low Frequency Oscillations. 

 

1. Introduction 

Series capacitors have extensively been used as a 

very effective means of increasing the power 

transfer capability of a transmission lines and 

improving transient and steady state stability 

limits of power systems [1-3]. These 

improvements are done by compensating 

reactance of the transmission lines. Besides of 

having remarkable profits for this kind of 

compensation for transmission line, the risk of 

sub synchronous resonance (SSR) could also be 

brought to the power system which could cause 

severe damages to the shaft of the generator 

unit[4,5]. SSR is a condition of an electrical 

power system where electrical networks 

exchange energy with the mechanical system of 

the generator at frequencies less than the 

nominal frequency of the transmission line [6]. 

At this situation, the turbine-generator oscillates 

at a frequency corresponding to the torsional 

mode frequency. The torsional oscillations may 

raise and result in the failure of the turbine shaft. 

Numerous papers have been published about 

damping the SSR phenomenon. Eigenvalue 

analysis [7–9], frequency scanning method [10–

12], time domain simulation [13] and Using 

Flexible AC Transmission Systems (FACTSs) 

controllers such as the static synchronous 

compensator (STATCOM) [14], the static 

synchronous series compensator (SSSC) [15,16], 

the unified power flow controller (UPFC) [17], 

the thyristor controlled series capacitor (TCSC) 

[18] and high voltage direct current (HVDC) 

transmission systems [19,20] have been applied 

to prevent the SSR in power systems. 

HVDC systems interconnect large power 

systems and offer economic benefits. The usage 

of these systems includes for example non-

synchronous interconnection, control of power 

flow, and modulation to increase stability limits. 
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Adding a supplementary damping controller to 

the HVDC converters can improve the modal 

damping of the turbine-generator system and 

thus allows higher levels of compensation ratio 

of the power system [21,22]. 

In this paper, a power system including turbine-

generator and VSC HVDC transmission system 

has been modeled as nonlinear state space 

equations. These equations have been linearized 

around operating point in order to analyze the 

small-signal stability, design damping phase 

compensator and measurement of oscillation 

mode controllability. It is well known that tuning 

a damping compensator for particular operating 

point cannot guarantee its appropriate 

performance in other points. Also, it may not 

capable to block oscillations arise from critical 

disturbances like three-phase faults and may 

have unacceptable response in nonlinear power 

system model. More recently, adaptive neural 

networks (ANN) have been successfully applied 

to the identification and control of nonlinear 

systems because they have the advantages of 

high computation speed, generalization, and 

learning ability. ANNs techniques have been 

applied for power system damping controller 

design such as implementing PSS in a single-

machine infinite bus system[23-25] and 

supplementary damping controller for FACTS 

devices[26,27]. In this paper a supplementary 

controller based on a neural network is proposed 

to damp power system LFOs and SSOs. This 

controller includes two individual parts: neural 

identifier and neural controller. The online 

training method is applied to training the 

controller through neural identifier and then the 

performance of supplementary neural controller, 

which can be tuned for overall operating points, 

is compared with phase compensator. 

 

2. Power system equipped by HVDC and 

turbine-generator system 

In [28,29], it is shown that HVDC system can 

improve the stability of power system using a 

supplementary controller. Also, controllability of 

electromechanical mode based on system inputs 

is investigated using singular value 

decomposition. But, resistance of DC cable 

which is most important component of the DC 

transmission line has been neglected. So in this 

paper, single turbine-generator system equipped 

with a VSC HVDC system paralleled with 

compensated AC and full model of a DC 

transmission lines are considered as Fig.1. 

 
Fig.1. Turbine-Generator System equipped by 

VSC HVDC and Compensated Lines 

The AC side of each converter is connected to 

the line through a coupling transformer. The first 

voltage source converter behaves as a rectifier. It 

regulates the DC link voltage and maintains the 

magnitude of the voltage at the connected 

terminal. The second voltage source converter 

acts as a controlled voltage source, which 

controls power flow in VSC HVDC feeder. The 

four input control signals to the VSC HVDC are 

ὓὶ,•ὶ,ὓὭ,•Ὥ  where ὓὶ,ὓὭ are the amplitude 

modulation ratio and •ὶ ,•Ὥ are phase angle of 

the control signals of each VSC respectively. 

The HVAC transmission line is represented by a 

reactance (ὼὰ) and a series fixed capacitive 

compensation (ὼὅ). The pure reactance of ac line 

can be considered as:ὼ= ὼὰ ὼὅ. 

 

A. VSC HVDC Dynamical Model 

By applying Park’s transformation and 

neglecting the resistance and transients of the 

coupling transformers, the VSC HVDC (Fig.1) 

can be modeled: 
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(2) 

ὅὠὨὧ= (Ὅ1 + Ὅ2)  (3) 

ὒ1 ὨὍ1/Ὠὸ= ὠὨὧ ὠὨὧὶ Ὑ1Ὅ1       

(4) 

ὒ2 ὨὍ2/Ὠὸ= ὠὨὧ ὠὨὧὭ Ὑ2Ὅ2       

(5) 

Where ὠὰ,ὠὦ,ὠὶ  and ὍὭ are the middle bus 

voltage, infinite bus voltage, flowed current to 

rectifier and inverter respectively. ὅ And  ὠὨὧ 

are the DC link capacitance and voltage, 

respectively. ὅὶ,ὅὭ,ὠὨὧὶ  and  ὠὨὧὭ are the DC 

capacitances and voltages of rectifier and 

inverter respectively. The non-linear model of 

the SMIB system of Fig.1 is: 

= )ὦ 1)  (6) 

= (ὖά ὖὩ Ὀὓ   (7)/( 

Ὁή
ᴂ= (ὉὪὨ ὼὨ ὼὨ

ᴂὍὸ Ὁή
ᴂ)/ὝὨέ

ᴂ   (8) 

ὉὪὨ= (ὑὃ(ὠὶὩὪ ὠὸ+ όὴίί) ὉὪὨ)/Ὕὃ   (9) 

Where: ὖὩ= ὠὸὨὍὸὨ+ ὠὸήὍὸή, ὠὸ= ὠὸὨ
2 + ὠὸή

2 , 

ὠὸὨ= ὼήὍὸή, ὠὸή= Ὁή
ᴂ ὼὨ

ᴂὍὸὨ, ὍὸὨ= ὍὰὨ ὍὶὨ, 

Ὅὸή= Ὅὰή Ὅὶή  where ὖά and ὖὩ are the input 

and output power , respectively ;ὓ and Ὀ the 

inertia constant and damping coefficient , 

respectively ; and  ; ὦ  the synchronous speed 

; the rotor angle and speed, respectively  

Ὁή
ᴂ,ὉὪὨ  and ὠὸ the generator internal, field and 

terminal voltages, respectively; ὝὨέ
ᴂ the open 

circuit field time constant; ὼὨ,ὼὨ
ᴂ and ὼή  the d-

axis, d-axis transient reactance, and q-axis 

reactance, respectively; ὑὃ and Ὕὃ the exciter 

gain and time constant, respectively; ὠὶὩὪ the 

reference voltage. Also, from Fig.1 we have: 

ὠὸ= ὮὼὸὍὸ+ ὠὰ        (10) 

ὠὸ= ὮὼὸὍὸ+ ὮὼὍὰ+ ὠὦ        (11) 

Ὅὰ= Ὅὸ ((ὠὸ ὮὼὸὍὸ ὠὶ)/Ὦὼὶ)        (12) 

WhereὍὸ,ὠὶ,Ὅὰ and ὠὦ are the armature current, 

rectifier voltage, infinite bus current and voltage 

respectively. From Eq (10)-(12) we can have: 

Ὅὸή= ((1/ 2ὼὶ)(ὼὓὶὠὨὧὶcos(•ὶ))

+ ὠὦsin /(() (ὤὼή+ ὃ)  

(13) 

ὍὸὨ= (ὤὉή
ᴂ (1/ 2ὼὶ)ὼὓὶὠὨὧὶsin (•ὶ)

ὠὦcos())/ (ὤὼὨ
ᴂ+ ὃ)  

(14) 

And for inverter side: 

ὍὭὨ= ( ὠὦὧέί

+ 0.5ὓὭὠὨὧὭίὭὲ(•Ὥ))/ὼὭ 

(15) 

ὍὭή= (ὠὦίὭὲ 0.5ὓὭὠὨὧὭὧέί(•Ὥ))/ὼὭ (16) 

By linearizing Eq (1)-(7), (13)-(16): 

ɝ= ὦɝ(17)  

ɝ= (ɝὖά ɝὖὩ Ὀɝὓ (18)/( 

ɝὉή
ᴂ= (ɝὉὪὨ ὼὨ ὼὨ

ᴂɝὍὸ

ɝὉή
ᴂ)/ὝὨέ

ᴂ 

  (19) 

ɝὉὪὨ= (ὑὃ(ɝὠὸ+ ɝόὴίί) ɝὉὪὨ)/Ὕὃ   (20) 

Where: 

ῳὠὸ= ὑ5ῳ+ ὑ6ῳὉή
ᴂ+ ὑὺὨὧὶῳὠὨὧὶ

+ ὑὺὓὶῳὓὶ+ ὑὺ•ὶῳ•ὶ 

(21) 

ῳὖὩ= ὑ1ῳ+ ὑ2ῳὉή
ᴂ+ ὑὴὨὧὶῳὠὨὧ

+ ὑὴὓὶῳὓὶ+ ὑὴ•ὶῳ•ὶ 

(22) 
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ῳὉή= ὑ4ῳ+ ὑ3ῳὉή
ᴂ+ ὑήὨὧὶῳὠὨὧὶ

+ ὑήὓὶῳὓὶ+ ὑή•ὶῳ•ὶ 

(23) 

ῳὠὨὧὶ= (ὅ31/ὅὶ)ῳ+ (ὅ32/ὅὶ)ῳὉή
ᴂ

+ (ὅ33/ὅὶ)ῳὠὨὧὶ
+ (1/ὅὶ)ῳὍ1
+ (ὅ34/ὅὶ)ῳὓὶ 

+ (ὅ35/ὅὶ)ῳ•ὶ 

(24) 

B. Turbine-Generator Dynamic Model 

The mechanical Turbine-Generator system 

corresponding to the electrical system (in Fig.1) 

is shown in Fig.2 with detail. It consists of 

exciter (Ex.), generator (Gen.), intermediate 

pressure (IP), low-pressure (LP), high-pressure 

(HP) turbine sections. Every section has its own 

angular momentum constant M and damping 

coefficient D, also every two successive masses 

have their own shaft stiffness constant K. The 

equation of the ὭὸὬ mass of N-mass spring 

system shown in Fig.3 are given by: 

ὓ
ὨὭ
Ὠὸ

= ὝὭ+ ὑὭ1,ὭὭ1 Ὥ

ὑὭ,Ὥ+ 1 Ὥ +Ὥ 1

ὈὭ(Ὥ (0  

Ὠ(Ὥ)

Ὠὸ
= Ὥ 0 

(25) 

 
Fig.2. Turbine-Generator system 

 

 

Fig.3. The ὭὸὬ mass of N-mass spring system 

 

3. Supplementary Damping Controller 

Design 

The damping controllers are designed to produce 

an electrical torque in phase with the speed 

deviation to damp SSOs and LFOs. The four 

control parameters of the HVDC (ὓὶ,•ὶ,ὓὭ,•Ὥ) 

can be modulated in order to produce the 

damping torque. The speed deviation is 

considered as the input to the damping 

controllers. Methods for damping controller 

design are explained in the following sub 

sections. 

A.  Lead-Lag Compensator based on 

QPSO 

The structure of HVDC based damping 

controller is shown in Fig.4. It consists of gain, 

signal washout and phase compensator blocks. 

The signal washout is the high pass filter that 

prevents steady changes in the speed from 

modifying the VSC HVDC input parameter. The 

value of the washout time constant Ὕύ  should be 

high enough to allow signals associated with 

oscillations in rotor speed to pass unchanged. 

From the viewpoint of the washout function, the 

value of Ὕύ is not critical and may be in the 

range of 1s to 20s. Ὕύ equal to 10s is chosen in 

the present studies. The parameters of the 

damping controller are obtained using the 

particle swarm optimization technique [25]. In a 

PSO system [26, 27, 28], multiple candidate 

solutions coexist and cooperate simultaneously. 

Each solution candidate, called a "particle", flies 

in the problem space (similar to the search 

process for food of a bird swarm) looking for the 

optimal position. A particle with time adjusts its 

position to its own experience, while adjusting to 

the experience of neighboring particles. If a 

particle discovers a promising new solution, all 

the other particles will move closer to it, 

exploring the region more thoroughly in the 

process. 
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Fig.4. Structure of  lead-lag  controller 

 

PSO starts [26] with a population of random 

solutions ‘particles’ in a D-dimension space. The 

i th particle is represented by

),...,,( 21 iDiii xxxX = . Each particle keeps track 

of its coordinates in hyperspace, which are 

associated with the fittest solution it has 

achieved so far. The value of the fitness for 

particle i  (pbest) is also stored as

),...,,( 21 iDiii pppP= . The global version of the 

PSO keeps track of the overall best value 

(gbest), and its location, obtained thus far by any 

particle in the population [26, 27]. PSO consists 

of, at each step, changing the velocity of each 

particle toward its pbest and gbest according to 

following equations: 

)(()

)(()

2

1

idgd

idididid

xprandC

xprandCvwv

-³³+

-³³+³=

 

(26) 

ididid vxx +=  (27) 

Where, idp  = pbest and gdp  = gbest 

PSO algorithm is as follow: 

Step.1: Initialize an array of particles with 

random positions and their associated 

velocities to satisfy the inequality constraints. 

Step.2: Check for the satisfaction of the 

equality constraints and modify the solution if 

required. 

Step. 3: Evaluate the fitness function of each 

particle. 

Step.4: Compare the current value of the 

fitness function with the particles’ previous 

best value (pbest). If the current fitness value 

is less, then assign the current fitness value to 

pbest and assign the current coordinates 

(positions) to pbestx. 

Step.5: Determine the current global 

minimum fitness value among the current 

positions. 

Step.6: Compare the current global minimum 

with the previous global minimum (gbest). If 

the current global minimum is better than 

gbest, then assign the current global 

minimum to gbest and assign the current 

coordinates (positions) to gbestx. 

Step.7: Change the velocities according to eq. 

(26). 

Step.8: Move each particle to the new 

position according to eq. (27) and return to 

Step 2. 

Step.9: Repeat Step 2–8 until a stopping 

criterion is satisfied or the maximum number 

of iterations is reached. 

The main disadvantage is that the PSO algorithm 

is not guaranteed to be global convergent [28]. 

The dynamic behavior of the particle is widely 

divergent form that of that the particle in the 

PSO systems in that the exact values of ix  and 

iv  cannot be determined simultaneously. In 

quantum world, the term trajectory is 

meaningless, because ix and iv  of a particle 

cannot be determined simultaneously according 

to uncertainty principle. Therefore, if individual 

particles in a PSO system have quantum 

behavior, the PSO algorithm is bound to work in 

a different fashion. In the quantum model of a 
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PSO called here QPSO, the state of a particle is 

depicted by wave function W(x, t) instead of 

position and velocity [27, 28]. Employing the 

Monte Carlo method, the particles move 

according to the following iterative equation: 

5.0),
1

(. ¢-+= k
u

LnxMbestpx iii b  
(28) 

5.0),
1

(. >--= k
u

LnxMbestpx iii b  
(29) 

Where u  and k  are values generated according 

to a uniform probability distribution in range 

[27], the parameter b is called contraction 

expansion coefficient, which can be tuned to 

control the convergence speed of the particle. In 

the QPSO, the parameter b must be set as b < 

1.782 to guarantee convergence of the particle 

[24]. Where Mbest called mean best position is 

defined as the mean of the pbest positions of all 

particles. i.e.: 

ä
=

=
N

d

iP
N

Mbest
1

1
 

(30) 

The procedure for implementing the QPSO is 

given by the following steps [27, 28]: 

Step1: Initialization of swarm positions: 

Initialize a population (array) of particles 

with random positions in the n-dimensional 

problem space using a uniform probability 

distribution function. 

Step2: Evaluation of particle’s fitness: 

Evaluate the fitness value of each particle. 

Step 3: Comparison to pbest (personal best): 

Compare each particle’s fitness with the 

particle’s pbest. If the current value is better 

than pbest, then set the pbest value equal to 

the current value and the pbest location equal 

to the current location in ndimensional space. 

Step4: Comparison to gbest (global best): 

Compare the fitness with the population’s 

overall previous best. If the current value is 

better than gbest, then reset gbest to the 

current particle’s array index and value. 

Step5: Updating of global point: Calculate the 

Mbest using eq.(30). 

Step6: Updating of particles’ position: 

Change the position of the particles according 

to Eq. (29), where c1 and c2 are two random 

numbers generated using a uniform 

probability distribution in the range [0, 1]. 

Step7: Repeating the evolutionary cycle: 

Loop to step 2 until a stop criterion is met, 

usually a sufficiently good 

B. Adaptive Neural Controller 

In this section, a brief background on neural 

networks (NN) will be included covering mainly 

the topics that will be important in a discussion 

of NN applications in closed-loop control of 

discrete-time dynamical systems. Included are 

the NN topologies and recall, properties, training 

techniques, and control architectures. In this 

paper adaptive neural controller which is 

proposed to use in VSC HVDC model is as 

shown in Fig.5. This adaptive neural controller is 

consisted from two separate neural networks as 

identifier and controller described in following. 

 
Fig.5 Structure of the online neural controller 
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Structure of neural identifier is shown in Fig.6. Ὢ 

is activation function that is hyperbolic tangent. 

It is trained using error back propagation method 

that described in detail in following. 

Coast function is defined as: 

ὉὭὨ= 0.5(ɝ ɝ2(

= 0.5ὩὭὨ
2  

(31) 

ɝAnd ɝare power system (i.e. rotor speed   

deviation) and neural identifier output, 

respectively. 

ὉὭὨ/(Ў(

= (ɝ ɝ(

= ὩὭὨ 

(32) 

And: 

ὉὭὨ/ύέὬ
ὭὨ= (ὉὭὨ/ὩὭὨ)(ὩὭὨ

/(ɝ)(((ɝ(

/ὺ)(ὺ/ύέὬ
ὭὨ)  

(33) 

Where ύέὬ
ὭὨ are weights between output and 

hidden layer. Using equation (33), the sensitive 

coefficient of output neuron is calculated and 

output weights are updated according equation 

(33). 

ύέὬὲὩύ
ὭὨ

= ύέὬέὰὨ
ὭὨ

–ὉὭὨ/ύέὬ
ὭὨ 

(34) 

Using sensitive coefficient in output neuron, it is 

possible to correct other weights between hidden 

and input layer. 

  
Fig.6. Structure of the online neural identifier 

 

Structure of neural identifier is shown in Fig.7. 

This is a feed forward network. Back 

propagation method used to train this network as 

described in following. 

Coast function to training this network is: 

Ὁὧέ= 0.5(0 ɝ2(

= 0.5ɝ2 = 0.5Ὡὧέ
2  

(35) 

and  

Ὁὧέ/(Ў( = ɝ

= Ὡὧέ 

 

Ὁὧέ/ύέὬ
ὧέ= (Ὁὧέ/Ὡὧέ)(Ὡὧέ

/(ɝ)(((ɝ(

/ὺ)(ὺ/ύέὬ
ὧέ)  

(36) 

V, ύέὬ
ὧέare the neural identifier output and the 

weights between output and hidden layer of 

neural controller, respectively. 

ὺ= έὬ
ὭὨώὬ

άὭ_ὭὨ

Ὤ

 

ώὬ
άὭ_ὭὨ

= Ὢ ὬὭ
ὭὨώὭ
Ὥὲ_ὭὨ

Ὤ

= Ὢ(όὬ)  

(37) 

ώὭ
Ὥὲ_ὭὨ

, ώὬ
άὭ_ὭὨ

, ὬὭ
ὭὨ, έὬ

ὭὨ, Ὥ  and Ὤ are inputs , 

inputs to output layer, connection weights 

between  input and hidden layer, weights 

between output and hidden layer, number of  

inputs and number of neuron in hidden layer of 

neural identifier, respectively. So: 

(ὺ/ύέὬ
ὧέ) = (ὺ/Ὗὧ)(Ὗὧ/ύέὬ

ὧέ)

= (ὺ/ώὬ
άὭὭὨ)(ώὬ

άὭὭὨ

/Ὗὧ)(Ὗὧ/ύέὬ
ὧέ)  

(38) 

Using equations (36-38), it is possible to 

calculate the sensitive coefficient in output 

neuron of neural controller and correct the 

middle and output weights of neural controller. 
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Fig.7. Structure of the online neural controller 

 

4. Controllability of Oscillation Mode  

The minimum singular value of the plant, Ὃ„  

evaluated as a function of frequency, is a useful 

measure for evaluating the feasibility of 

achieving acceptable control. If the inputs and 

outputs have been scaled, then it is possible with 

a manipulated input of unit magnitude (measured 

with 2 norm), achieve an output of magnitude of 

at least  Ὃ„   in any output direction. Generally  

Ὃ„  must be as large as possible, at least to 

avoid input saturation, it is prefered  Ὃ„  larger 

than about 1 at all frequencies where control is 

required. For more detail, readers can refer to 

[29-31]. In the following, using of SVD is 

explained for selection the output of system. To 

measure the controllability of the EM mode by a 

given input (control signal), SVD is employed. 

Mathematically, if Ὃ is an ὓ× ὔ complex 

matrix, then there exist unitary matrices Ὗ and ὠ 

with dimensions of ὓ× ὓ and ὔ× ὔ, 

respectively, such that:Ὃ= ὟɫὠὌWhere 

ɫ=
ɫὰ 0
0 0

, ɫὰ= ὨὭὥὫ(„ὰ,ȣ,„ὶ)  With 

„ὰ Ễ „ὶ 0 where ὶ= min {ά,ὲ} and 

„ὰ,ȣ,„ὶ  are the singular values of Ὃ. The 

minimum singular value „ὶ represents the 

distance of the matrix Ὃ from all the matrices 

with a rank of  ὶ 1 [31-33]. This property can 

be used to quantify modal controllability. The 

matrix Ὄ can be written as Ὄ= [Ὤ1,Ὤ2,Ὤ3,Ὤ4] 

where ὬὭ is a column vector corresponding to the 

ὭὸὬ input. The minimum singular value, „άὭὲ of 

the matrix ‗Ὅ ὃ,ὬὭ indicates the capability of 

the ὭὸὬ input to control the mode associated with 

the eigenvalue ‗. Actually, the higher „άὭὲ, the 

higher the controllability of this mode by the 

input considered. As such, the controllability of 

the EM mode can be examined with all inputs in 

order to identify the most effective one to control 

the mode. 

5. Simulation Results 

 

SVD is employed to measure the controllability 

of the oscillation mode based on SSOs and LFOs 

from each of the four inputs:  ὓὶ,•ὶ,ὓὭ,•Ὥ . 

The minimum singular value „άὭὲ is estimated 

over a wide range of operating conditions. For 

SVD analysis, ὖὩ ranges from 0.01 to 1.5 Pu and 

ὗὩ= + 0.3,0, 0.3 . At this loading condition, 

the system model is linearized, the EM mode is 

identified, and the SVD-based controllability 

measure is implemented. the following can be 

noticed: 

¶ EM mode controllability via ὓὶ and •ὶ 

is always higher than that of any other 

input. 

¶ The capabilities of •ὶand ὓὶto control 

the EM mode is higher than that of •Ὥ 

and ὓὭ. 

¶ The EM mode is controllable with •Ὥ 

than with ὓὭ. 

 

Responses of linear and nonlinear system for 

some masses are shown in Fig.8. Obviously 

system is unstable. To assess the effectiveness of 

the proposed stabilizers following conditions are 

considered for linear and nonlinear system 

(table.1): 

 

Table.1. System condition 

System Work 

Point 

Disturbance Time  

Nonlinear ὖὩ= 1.1, 

ὗὩ= 0.3, 

ὠὸ= 1 

three phase 

fault for 5 

cycles in 

infinite bus 

ὸ= 5ί 
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Linear ὖὩ= 1.1, 

ὗὩ= 0.3, 

ὠὸ= 1 

Mechanical 

power 

applied to 

rotor 

Ўὖά = 0.1 

ὸ= 0ί 

Lead-lag controller based on QPSO is designed 

based on following objective function: 

Ὢ= ὸЎὫ

ὸίὭά

0

Ὠὸ 

Where, Ў-is the speed deviation in turbine 

generator system and ὸίὭά   is the time range of 

simulation.  For objective function calculation 

the time domain simulation of the power system 

model is carried out for the simulation period. It 

is aimed to minimize this objective function in 

order to improve the system response in terms of 

the settling time and over shoot. Controller 

parameters i.e. Ὕ1,Ὕ2,Ὕ3,Ὕ4,ὑ are considered as 

particles. These parameters for ὖὩ= 1.1,ὗὩ=

0.3,ὠὸ= 1 condition, after QPSO calculation, 

are as: Ὕ1 = 0.2,Ὕ2 = 0.091,Ὕ3 = 0.34,Ὕ4 =

1.1,ὑ= 4.058 . Neural controller and 

identifier have following specifications: 

 

Table.2. Neural Controller Characteristics 

NN  type Activation 

Function 

Layers 

1 2 3 

Controller Multilayer 

feed 

forward 

ὥ.ὝὥὲὬὦ.ὼ 

ὥ= 0.051, 

ὦ= 1 

6 6 1 

Identifier Multilayer 

feed 

forward 

ὥ.ὝὥὲὬὦ.ὼ 

ὥ= 1, 

ὦ= 1 

6 8 1 

Fig.8. shows the load angle of mass-A in linear 

and nonlinear system. Obviously both systems 

are unstable. 

Figures 9-10 show the linear and nonlinear 

power system responses respectively. According 

to these figures, neural network damps active 

power and rotor speed oscillations better than 

lead-lag based on QPSO controller for 

disturbances. it is clearly seen that the dynamical 

performance at different loading conditions for a 

neural controller has more quality because neural 

controller decrease setting time and peak 

amplitude. Fig.10 shows the lead-lag based 

QPSO compensator cannot stabilize nonlinear 

system. In these figures, a three phase fault at 

t=5s accures and clears after 5 cycles. It is 

considered that phase compensator cannot damp 

oscillations for large disturbance. however 

neural controller has a good responses in all 

operating conditions. As a result, neural 

controller improves dynamical and transient 

stability effectively. 

6. Conclusion 

In this paper, a novel dynamic model of turbine-

generator system based on SSR which is 

equipped by VSC HVDC transmission system, is 

considered and supplementary controller is 

designed for improve power system stability and 

SSROs and  LFOs oscillation damping. SVD has 

been employed to evaluate the oscillation mode 

controllability to the four VSC HVDC input. 

Also, for improving the system stability and 

damping oscillations, a neural controller is 

proposed. The simulation results has been 

carried out by SIMULINK/MATLAB show 

designed neural controller for system has the 

perfectly effect in dynamic and transient 

improvement in comparison with phase 

compensator. 
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(a) ὗὩ= 0.3 (c) ὗὩ= 0 (b) ὗὩ= + 0.3 

Fig.7 Controllability measure using singular value decomposition for oscillation mode 
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(a)Linear System (b)Nonlinear System 

Fig.8. Response of some masses in turbin-generator system without installing any damping controoller 

   
(1)Speed Deviation for Mass A (2) Speed Deviation for Mass B (3) Speed Deviation for Mass E 

   
(4) Speed Deviation for Mass g (5) Speed Deviation for Mass H (6) Speed Deviation for Mass I 

   
(7)Deviation of Generated Active 

Power 

(8)Deviation of Modulation 

Angle in Rectifier 

(9)Deviation of Modulation 

Index in Rectifier 

Fig.9. Linear System Response for  

   
(1) Deviation for Modulation 

Angle in Rectifier side of HVDC 

(2)Generator Terminal Voltage (3)Active Power (Produced by 

Generator) 
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(Ў•ὶ) 

   
(4)Load angle for Mass A(ὃ) (5) Load angle for Mass B(ὄ) (6) Load angle for Mass E(Ὁ) 

   
(7) Load angle for Mass g(Ὣ) (8) Load angle for Mass H(Ὄ) (9) Load angle for Mass I(Ὅ) 

   
(10) Shaft Speed Deviation for  

Mass A((ὃ 

(11) Shaft Speed Deviation for  

Mass B((ὄ 

(12) Shaft Speed Deviation for  

Mass E((Ὁ 

   
(13) Shaft Speed Deviation for  

Mass g((Ὣ 

(14) Shaft Speed Deviation for  

Mass H((Ὄ 

(15) Shaft Speed Deviation for  

Mass I((Ὅ 

Fig.10. Response of nonlinear system to a short circuit in inifint bus 

 


