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Abstract: This paper presents the effect of the high voltage direct current (HVDC) transmission system
based on voltage source converter (VSC) on the sub synchronous resonance (SSR) and low frequency
oscillations (LFO) in power system. A novel adaptive neural controller based on neural identifier is
proposed for the HVDC which is capable of damping out LFO and sub synchronous oscillations (SSO).
For comparison purposes, results of system based damping neural controller are compared with a lead-lag
controller based on quantum particle swarm optimization (QPSO). It is shown that Implementing adaptive
damping controller not only improve stability of power system but also can overcome drawbacks of
conventional compensators with fixed parameters. In order to determine the most effective input of HYDC
system to apply supplementary controller signal, analysis based on singular value decomposition is
performed. To evaluate the performance of the proposed controller, transient simulations of detailed
nonlinear system are considered.

Keywords: Synchronous Resonance, Neural Network Damping Controller, Quantum Particle Swarm
Optimization, HVDC Transmission Systems, Low Frequency Oscillations.

1. Introduction
Series capacitors have extensively been used as a

mode frequency. The torsional oscillations may
raise and result in the failure of the turbine shaft.

very effective means of increasing the power
transfer capability of a transmission lines and
improving transient and steady state stability
limits of power systems [1-3]. These
improvements are done by compensating
reactance of the transmission lines. Besides of
having remarkable profits for this kind of
compensation for transmission line, the risk of
sub synchronous resonance (SSR) could also be
brought to the power system which could cause
severe damages to the shaft of the generator
unit[4,5]. SSR is a condition of an electrical
power system where electrical networks
exchange energy with the mechanical system of
the generator at frequencies less than the
nominal frequency of the transmission line [6].
At this situation, the turbine-generator oscillates
at a frequency corresponding to the torsional
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Numerous papers have been published about
damping the SSR phenomenon. Eigenvalue
analysis [7—9], frequency scanning method [10—
12], time domain simulation [13] and Using
Flexible AC Transmission Systems (FACTSSs)
controllers such as the static synchronous
compensator (STATCOM) [14], the static
synchronous series compensator (SSSC) [15,16],
the unified power flow controller (UPFC) [17],
the thyristor controlled series capacitor (TCSC)
[18] and high voltage direct current (HVDC)
transmission systems [19,20] have been applied
to prevent the SSR in power systems.

HVDC systems interconnect large power
systems and offer economic benefits. The usage
of these systems includes for example non-
synchronous interconnection, control of power
flow, and modulation to increase stability limits.
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Adding a supplementary damping controller to
the HVDC converters can improve the modal
damping of the turbine-generator system and
thus allows higher levels of compensation ratio
of the power system [21,22].

In this paper, a power system including turbine-
generator and VSC HVDC transmission system
has been modeled as nonlinear state space
equations. These equations have been linearized
around operating point in order to analyze the
small-signal stability, design damping phase
compensator and measurement of oscillation
mode controllability. It is well known that tuning
a damping compensator for particular operating
point cannot guarantee its appropriate
performance in other points. Also, it may not
capable to block oscillations arise from critical
disturbances like three-phase faults and may
have unacceptable response in nonlinear power
system model. More recently, adaptive neural
networks (ANN) have been successfully applied
to the identification and control of nonlinear
systems because they have the advantages of
high computation speed, generalization, and
learning ability. ANNSs techniques have been
applied for power system damping controller
design such as implementing PSS in a single-
machine infinite bus system[23-25] and
supplementary damping controller for FACTS
devices[26,27]. In this paper a supplementary
controller based on a neural network is proposed
to damp power system LFOs and SSOs. This
controller includes two individual parts: neural
identifier and neural controller. The online
training method is applied to training the
controller through neural identifier and then the
performance of supplementary neural controller,
which can be tuned for overall operating points,
is compared with phase compensator.

2. Power system equipped by HVDC and
turbine-generator system

In [28,29], it is shown that HVDC system can

improve the stability of power system using a
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supplementary controller. Also, controllability of
electromechanical mode based on system inputs
is investigated using  singular  value
decomposition. But, resistance of DC cable
which is most important component of the DC
transmission line has been neglected. So in this
paper, single turbine-generator system equipped
with a VSC HVDC system paralleled with
compensated AC and full model of a DC
transmission lines are considered as Fig.1.
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Fig.1. Turbine-Generator System equipped by
VSC HVDC and Compensated Lines
The AC side of each converter is connected to
the line through a coupling transformer. The first
voltage source converter behaves as a rectifier. It
regulates the DC link voltage and maintains the
magnitude of the voltage at the connected
terminal. The second voltage source converter
acts as a controlled voltage source, which
controls power flow in VSC HVDC feeder. The
four input control signals to the VSC HVDC are
0i,*;,0-g* o Where 0,0 pare the amplitude
modulation ratio and ¢ ; ,* -qare phase angle of
the control signals of each VSC respectively.
The HVAC transmission line is represented by a
reactance (&) and a series fixed capacitive
compensation (6y). The pure reactance of ac line
can be considered as:w= @) Gy.

A. VSC HVDC Dynamical Model

By appl yi n gansfolationk "arsl
neglecting the resistance and transients of the
coupling transformers, the VSC HVDC (Fig.1)
can be modeled:
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(&%) _ (D) axis, d-axis transient reactance, and g-axis
G B reactance, respectively; Uz and “Y the exciter
0 & R (0yayddi(c))/2 gain and time constant, respectively; Gyao the
@ 0 B (Oiayiet))2 reference voltage. Also, from Fig.1 we have:
Win 0 Gp @ ) 0= DO+ G (10)
G 0 Q Q= QO+ o
b (Ve (¢ 0)/2 G = QO+ B+ Gy (11)
(0 i '+ 1:9)/ 2
. o~ V=9 (& @9 0)'Q) (12)
Ooupy= (9+ 9 ®)
o , . Where'@w,"@and «y, are the armature current,
O QD =0 @ MO rectifier voltage, infinite bus current and voltage
) respectively. From Eq (10)-(12) we can have:
U QD = Gam %9 o @ (2@ @ o5 )) (13

+ ogsin (1 ))/ (axy + 0)
Where &,0y, @ and "@are the middle bus . N
voltage, infinite bus voltage, flowed current to &= (a7 ( 2,‘*”‘*”"‘*?13 sin (3 ) (14)
rectifier and inverter respectively. 6 And @y dgcos (| ))/ (dug+ 0)
are the DC link capacitance and voltage,
respectively. 6, ,0quy; and yoare the DC
capacitances and voltages of rectifier and Q= ( G (15)
inverter respectively. The non-linear model of + 0.50 gayid @ (* 9)/ o
the SMIB system of Fig.1 is:

And for inverter side:

Q= (6ni'®1 050 gundhi () o (16)

T=1a0 1) (6)

By linearizing Eq (1)-(7), (13)-(16):
1 =(% G Q)b (7)

d =1 o3 (17)
= (G @ EQ P (®) o
* Nl 3 = (30 3V ©Osf )/0 (18)
Op = (05(Cga 63+ O4ii) Om)!” 9
Om=(0(@an @+ o) ClY ) sQP= (30p Gy GE3P (19)
Where: 0n= GQio®+ 8, = GG+ 65, TR E

Qo= @' G = F ERR=D @ 30p = (U5(36y+ 365) 30g)/Y  (20)
@ =] @ where & and Ug are the input
and output power , respectively ;0 and O the
inertia constant and damping coefficient , Wiy = UsQ) + U0+ Uyl G0 (21)
respectively ;7 g the synchronous speed ;7 and
1 the rotor angle and speed, respectively ;
G5 Qg and @y the generator internal, field and W= 016) + 0GR+ Ojgs Wiy (22)
terminal voltages, respectively; “¥ the open + Oppi @0 + Oy 02y

circuit field time constant; oy, 6§ and 6y the d-

Where:

T Uppi WU + Upej O
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Wy = 0400 + U3WOPH Uy WOl (23)
+ Oppy @O + Oy 0@

iy = (031/6;)Q) + (032/ 6 ) WIGF (24)
+ (033! 6; ) oy
+ (U 6)we
+ (034/ 6 ) WD
+ (635/ 6 )or

B. Turbine-Generator Dynamic Model

The mechanical Turbine-Generator system
corresponding to the electrical system (in Fig.1)
is shown in Fig.2 with detail. It consists of
exciter (Ex.), generator (Gen.), intermediate
pressure (IP), low-pressure (LP), high-pressure
(HP) turbine sections. Every section has its own
angular momentum constant M and damping
coefficient D, also every two successive masses
have their own shaft stiffness constant K. The
equation of the '@ mass of N-mass spring
system shown in Fig.3 are given by:
0 %Qz Gt l')"Ql,"ffl Q1 1Q (25)

Uge1lo Ta1

Odl o 1 o)

P P P4 LPB GEN EXC

Fig.2. Turbine-Generator system

D; M;

Fig.3. The "®mass of N-mass spring system
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3. Supplementary Damping Controller
Design

The damping controllers are designed to produce
an electrical torque in phase with the speed
deviation to damp SSOs and LFOs. The four
control parameters of the HYDC (0;,*;,0 q°* 9
can be modulated in order to produce the
damping torque. The speed deviation is
considered as the input to the damping
controllers. Methods for damping controller
design are explained in the following sub
sections.

A. Lead-Lag Compensator based on
QPSO

The structure of HVDC based damping
controller is shown in Fig.4. It consists of gain,
signal washout and phase compensator blocks.
The signal washout is the high pass filter that
prevents steady changes in the speed from
modifying the VSC HVDC input parameter. The
value of the washout time constant Y should be
high enough to allow signals associated with
oscillations in rotor speed to pass unchanged.
From the viewpoint of the washout function, the
value of “Y is not critical and may be in the
range of 1s to 20s. Y equal to 10s is chosen in
the present studies. The parameters of the
damping controller are obtained using the
particle swarm optimization technique [25]. In a
PSO system [26, 27, 28], multiple candidate
solutions coexist and cooperate simultaneously.
Each solution candidate, called a "particle”, flies
in the problem space (similar to the search
process for food of a bird swarm) looking for the
optimal position. A particle with time adjusts its
position to its own experience, while adjusting to
the experience of neighboring particles. If a
particle discovers a promising new solution, all
the other particles will move closer to it,
exploring the region more thoroughly in the
process.
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Fig.4. Structure of lead-lag controller

PSO starts [26] with a population of random
sol uti ons ' -piraension sgade. dle’
i th particle is represented by

X, =(X,X5,.-., Xp ) . Each particle keeps track
of its coordinates in hyperspace, which are
associated with the fittest solution it has
achieved so far. The value of the fitness for
particle i  (pbest) is also stored as
P =(p4. P,.--s Pp)- The global version of the
PSO keeps track of the overall best value
(gbest), and its location, obtained thus far by any
particle in the population [26, 27]. PSO consists
of, at each step, changing the velocity of each
particle toward its pbest and gbest according to
following equations:

Vig =W Vg +C; 3 rand()? (pid - Xid) (26)
+C, 2 rand()® (Pyq - %a)

Xg = Xg +Vig (27)
Where, p, =pbestand pgq = gbest

PSO algorithm is as follow:

Step.1l: Initialize an array of particles with
random positions and their associated
velocities to satisfy the inequality constraints.

Step.2: Check for the satisfaction of the
equality constraints and modify the solution if
required.
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Step. 3: Evaluate the fitness function of each
particle.

Step.4: Compare the current value of the
fitness function
best value (pbest). If the current fitness value
is less, then assign the current fitness value to
pbest and assign the current coordinates
(positions) to pbestx.

Step.5: Determine the current global
N mthimdtn fitness value among the current
positions.

Step.6: Compare the current global minimum
with the previous global minimum (gbest). If
the current global minimum is better than
gbest, then assign the current global
minimum to gbest and assign the current
coordinates (positions) to gbestx.

Step.7: Change the velocities according to eq.
(26).

Step.8: Move each particle to the new
position according to eq. (27) and return to
Step 2.

Step.9: Repeat Step 2-8 until a stopping
criterion is satisfied or the maximum number
of iterations is reached.

The main disadvantage is that the PSO algorithm
is not guaranteed to be global convergent [28].
The dynamic behavior of the particle is widely
divergent form that of that the particle in the

PSO systems in that the exact values of X and

VvV, cannot be determined simultaneously. In

guantum world, the term trajectory is
meaningless, because X and V, of a particle

cannot be determined simultaneously according
to uncertainty principle. Therefore, if individual
particles in a PSO system have quantum
behavior, the PSO algorithm is bound to work in
a different fashion. In the quantum model of a

wi t h

t

h e
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PSO called here QPSO, the state of a particle is
depicted by wave function W(x, t) instead of
position and velocity [27, 28]. Employing the
Monte Carlo method, the particles move
according to the following iterative equation:

28
X = p+ b|Mbest - >q|Ln(%),k¢0.5 (@8)

2
X = p- b/Mbest- >g|Ln(%),k>0.5 (@)

Where u and Kk are values generated according
to a uniform probability distribution in range
[27], the parameter & is called contraction

expansion coefficient, which can be tuned to
control the convergence speed of the particle. In
the QPSO, the parameter b must be setas b <

1.782 to guarantee convergence of the particle
[24]. Where Mbest called mean best position is
defined as the mean of the pbest positions of all
particles. i.e.:

N

Mbest= 1 a

d=1

b (30)

The procedure for implementing the QPSO is
given by the following steps [27, 28]:

Stepl: Initialization of swarm positions:
Initialize a population (array) of particles
with random positions in the n-dimensional
problem space using a uniform probability
distribution function.

Step2: Eval uati on of

Evaluate the fitness value of each particle.

Step 3: Comparison to pbest (personal best):
Compar e each part.
particle’s pbest. I
than pbest, then set the pbest value equal to
the current value and the pbest location equal
to the current location in ndimensional space.
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Step4: Comparison to gbest (global best):
Compar e the fitness
overall previous best. If the current value is
better than gbest, then reset gbest to the
current particle’s

Step5: Updating of global point: Calculate the
Mbest using eq.(30).

Step6 : Updating of
Change the position of the particles according
to Eq. (29), where c1 and c2 are two random
numbers generated using a uniform
probability distribution in the range [0, 1].

Step7: Repeating the evolutionary cycle:
Loop to step 2 until a stop criterion is met,
usually a sufficiently good

B. Adaptive Neural Controller

In this section, a brief background on neural
networks (NN) will be included covering mainly
the topics that will be important in a discussion
of NN applications in closed-loop control of
discrete-time dynamical systems. Included are
the NN topologies and recall, properties, training
techniques, and control architectures. In this
paper adaptive neural controller which is
proposed to use in VSC HVDC model is as
shown in Fig.5. This adaptive neural controller is
consisted from two separate neural networks as
identifier and controller described in following.

wi t h
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Fig.5 Structure of the online neural controller

bett el



MAGNT Research Report (ISSN. 1444-8939)

Vol.3 (1). PP: 96-109

Structure of neural identifier is shown in Fig.6. "Q
is activation function that is hyperbolic tangent.
It is trained using error back propagation method
that described in detail in following.

Coast function is defined as:

Og=05(3 3 )2 31)
= 05G,

31 And 31 are power system (i.e. rotor speed
deviation) and neural identifier output,

respectively.

T Og/t (M) (32)
= (3 3)

= Qg

And:

1 Op/t 0¢%h= ( O/t Q) (33)

T )N )
AROTRVARP
Where 0% are weights between output and
hidden layer. Using equation (33), the sensitive
coefficient of output neuron is calculated and
output weights are updated according equation
(33).
0o (34)
= Oé%m
1 0o/ 0%
Using sensitive coefficient in output neuron, it is
possible to correct other weights between hidden
and input layer.

Fig.6. Structure of the online neural identifier
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Structure of neural identifier is shown in Fig.7.
This is a feed forward network. Back
propagation method used to train this network as
described in following.

Coast function to training this network is:

Qz = 05(0 & )2 (35)
=053 ?2=05C

and

TQ:/t (V)=

= !ggi .

TQe/T0g%= (0 Qu/T %)M Q% (36)

(& Na @)

~ AEOIEREN
V, 0 &are the neural identifier output and the
weights between output and hidden layer of
neural controller, respectively.

b= ] Bugee 37)
o

o

=0 1 "
Q

= "6

-2, o921 81 B "Qand "Qare inputs ,
inputs to output layer, connection weights
between  input and hidden layer, weights
between output and hidden layer, number of
inputs and number of neuron in hidden layer of
neural identifier, respectively. So:

CUTo8) =001 ™0 W od9 (39
= 0/ df B)(ahy ®
AT

Using equations (36-38), it is possible to

calculate the sensitive coefficient in output

neuron of neural controller and correct the
middle and output weights of neural controller.
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Fig.7. Structure of the online neural controller

4. Controllability of Oscillation Mode
The minimum singular value of the plant, » "O
evaluated as a function of frequency, is a useful
measure for evaluating the feasibility of
achieving acceptable control. If the inputs and
outputs have been scaled, then it is possible with
a manipulated input of unit magnitude (measured
with 2 norm), achieve an output of magnitude of
at least » "O in any output direction. Generally
» "0 must be as large as possible, at least to
avoid input saturation, it is prefered » "O larger
than about 1 at all frequencies where control is
required. For more detail, readers can refer to
[29-31]. In the following, using of SVD is
explained for selection the output of system. To
measure the controllability of the EM mode by a
given input (control signal), SVD is employed.
Mathematically, if "Ois an 0 x 0 complex
matrix, then there exist unitary matrices "Yand
with dimensions of 0 x0 and0 x 0,
respectively, ~ such  that:"O= "% @ Where

+ — +(] 0 +d: 'Q'@‘Q,, @8 ,”,l) Wlth

0 o

.« E .1 0 where i = min{&,t} and
2O sni are the singular values of "O The
minimum singular value ,; represents the
distance of the matrix "Ofrom all the matrices
with a rank of i 1 [31-33]. This property can
be used to quantify modal controllability. The
matrix "O can be written as "'O= ['Q,"Q,"Q, Q]
where "@yis a column vector corresponding to the
@ input. The minimum singular value, , 4-¢ Of
the matrix _"O 0,"®, indicates the capability of

the "@input to control the mode associated with
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the eigenvalue _. Actually, the higher, 4, the
higher the controllability of this mode by the
input considered. As such, the controllability of
the EM mode can be examined with all inputs in
order to identify the most effective one to control
the mode.

5. Simulation Results

SVD is employed to measure the controllability
of the oscillation mode based on SSOs and LFOs
from each of the four inputs: 0;,*;,0q* o
The minimum singular value , 4-¢ iS estimated
over a wide range of operating conditions. For
SVD analysis, Uq ranges from 0.01 to 1.5 Pu and
O0q= +0.3,0, 0.3. At this loading condition,
the system model is linearized, the EM mode is
identified, and the SVD-based controllability
measure is implemented. the following can be
noticed:

1 EM mode controllability via 0; and e,
is always higher than that of any other
input.

1 The capabilities of « ; and 0 ; to control
the EM mode is higher than that of ¢ -
and 0 -

1 The EM mode is controllable with ¢ o
than with 0 -q

Responses of linear and nonlinear system for
some masses are shown in Fig.8. Obviously
system is unstable. To assess the effectiveness of
the proposed stabilizers following conditions are
considered for linear and nonlinear system
(table.1):

Table.1. System condition

System Work Disturbance  Time
Point
Nonlinear 0g= 1.1, three phase 6= 5i
0o= 0.3, faultfor5
=1 cyclesin
infinite bus
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Linear Uo= 1.1, Mechanical o= 0i

0= 0.3, power
w=1 applied to
rotor
Y = 041

Lead-lag controller based on QPSO is designed
based on following objective function:

Ga

= oY oD@

0
Where, ¥ is the speed deviation in turbine-
generator system and Q- is the time range of
simulation. For objective function calculation
the time domain simulation of the power system
model is carried out for the simulation period. It
is aimed to minimize this objective function in
order to improve the system response in terms of
the settling time and over shoot. Controller
parameters i.e. "Y,"¥,”¥,”Y,0 are considered as
particles. These parameters for Oo= 1.1,0=
0.3, = 1 condition, after QPSO calculation,
are as: "Y=02,"¥=0.091,"¥=034,"Y=
11,0 = 4058 . Neural -controller and
identifier have following specifications:

Table.2. Neural Controller Characteristics

NN type Activation  Layers
Function 1 23
Controller ~ Multilayer Q"Y' Qam 6 6 1

feed @= 0.051,
forward w=1
Identifier ~ Multilayer @A"Y Qaw 6 8 1
feed W= 1,
forward w=1

Fig.8. shows the load angle of mass-A in linear
and nonlinear system. Obviously both systems
are unstable.

Figures 9-10 show the linear and nonlinear
power system responses respectively. According
to these figures, neural network damps active
power and rotor speed oscillations better than
lead-lag based on QPSO controller for
disturbances. it is clearly seen that the dynamical
performance at different loading conditions for a
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neural controller has more quality because neural
controller decrease setting time and peak
amplitude. Fig.10 shows the lead-lag based
QPSO compensator cannot stabilize nonlinear
system. In these figures, a three phase fault at
t=5s accures and clears after 5 cycles. It is
considered that phase compensator cannot damp
oscillations for large disturbance. however
neural controller has a good responses in all
operating conditions. As a result, neural
controller improves dynamical and transient
stability effectively.

6. Conclusion

In this paper, a novel dynamic model of turbine-
generator system based on SSR which is
equipped by VSC HVDC transmission system, is
considered and supplementary controller is
designed for improve power system stability and
SSROs and LFOs oscillation damping. SVD has
been employed to evaluate the oscillation mode
controllability to the four VSC HVDC input.
Also, for improving the system stability and
damping oscillations, a neural controller is
proposed. The simulation results has been
carried out by SIMULINK/MATLAB show
designed neural controller for system has the
perfectly effect in dynamic and transient
improvement in comparison with phase
compensator.

Appendix

Z:1+ﬁ,A=xt+xI +ﬁ[A] = A+ ZXq,
X.

r

B] = A+2x, C, = c0S@)
[B] X ]

—_ XIMrVdCSin(/.r) C. = XIVdc COS(/ r )

2 3

2x [ B] 2x. [ B]
= x M, cos( , ) c, :E,C _\psin(d)
2x, [ B] AT A
c =. XM V4. cos( ;) cs=- XVgcsing )
! 2x. [ Al ’ 2x [ Al
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XI M rVdc COS(/ r )
2X, [ Al

Cp =Eq+(Xg- Xa)Cy =(%g- Xa)ly,

C9:'

Ky =CyCy +C,Co Ky = 1(1+(%; - Xa)Cs),

Kpdcr :CbC4 + CaCQ Ker = CbCS +CaCSv

Kopir = GG, + GG Xy~ Xa=J,

K; =1+JG,, r =JC; Kqmr =3,
1

KQdcrz‘]Cg’Lz\T’

t
Ks = L(VgX,Cy1 - VigX aCs )
K6 = LV,,(1- XaCs),
Kvdor = L(VigXqCy - VigX aCq )
KVMr = L(th XqC3 - th X dC8 )

. Xd +X
V/r_L( td q thXdC7)1E: X t!
r
Xq'|'Xt
F= 1o—EC5‘—C11 EC;,
X; X,
~ M, .
C12_EC7'§Vdcrsm(/r)

r

1 .
C13=§MrCOSQr)+ECB,
1 .
Cu :Zcosq )+EG Ci5 =FCy,
1
Cie = 2Xr Vier SING )+ FG,
C17:'iMrCOS(/'r)+FC4

1 . 1
TVdcr cos(f,),Cio= vad

r

Cig=FCs-

1 .. 1 ..
C20=2_XiMi sin(/;),Cy, =_Xincr sin(/ ;)

1 . 1
C22=§Mivdci COSQi)’Czc«;:ZVb

q

1 )
C24:'§Mi cos(/ ; ),
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1 _ 1 .
Cys =- Z—Xinci cos(/ ;) Cye = Tvdci sin(/; )

fy =[0.5cos(; )lig +0.5sin(/; )]

f, =-[-05sin(/; )iy +0.5c0s( ; )l;,]
f; =-0.5M,cos(,; ), f, =-0.5M;sin(/ ;)
fs =-[05cos( )l 4 +0.5sin(/; )l 4]

fe =-[-0.5sin(/; )l ,4 +0.5c0s( )l ,]
f, =-0.5M, cos(,), f, =-0.5M, sin(/ , )
Cp7 = 135G+ £4C3, Cog = 15C50 + 1,Cyy
Coo =1 +£5C5 +1,Cy,

Cao = f5 + f3Co, + 1,C56 C5, = £,Cy + £3Cys,
Cso = 17C19 Cys = F7,C14 + 15Cyy

Cay = fs+ 1,C 5+ 1,Cy4,

Cas = fg + 1,C1o+ f5Cy
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