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Abstract: 

In this paper, we propose a novel method for solving systems of fractional partial differential equations. 

This is very easy to use method and a combination of the discretization, an interpolation method and 

nonlinear programming.  It can also be applied to equations of other types. The main advantage of the 

method lies in its flexibility for obtaining the approximate solutions of fractional equations. The fractional 

derivative is described in the Caputo sense. Using this approach, we convert a system of fractional partial 

differential equation into a multi objective nonlinear programming problem. Several numerical examples 

are used to demonstrate the effectiveness and accuracy of the method. 
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1. Introduction 

Let  be a function,  and 

. Denote by  the Caputo fractional 

differential operator at the variable . Consider 

the continuous-time fractional diffusion-wave  

Consider the system of fractional partial 

differential equations (FPDEs) with the 

initial conditions of the form: 

                                                                                                      
(1-1)  

where  and 

  are real parameters 

with bounded initial conditions 

 and boundary 

conditions  and 

 for all 

 and  are continuous functions. 

This type of fractional differential equations 

have recently proved to be valuable tools for 

the modeling of many phenomena in fluid 

mechanics, physics, electrochemistry, 

mathematical biology and other sciences 

(Hilfer, 1999). Various researchers have 

introduced new methods in the literature. 

These methods include the Adomian 

decomposition method (ADM) (Jafari & 

Seifi, Solving system of nonlinear fractional 

partial differention equations by homotopy 

analysis method,, 2009), homotopy analysis 

method 

(HAM) (Jafari & Seifi, Solving system of 

nonlinear fractional partial differention 

equations by homotopy analysis method,, 

2009), homotopy perturbation method 

(HPM) (Singh, Gupta, & Rai, 2011) , the 

variational iteration method (VIM) (Odibat 

& Momani, Application of variational 

iteration method to Nonlinear differential 

equations of fractional order, 2006) and the 

Laplace decomposition method (Jafari, 

Khalique, & Nazari, Application of Laplace 

decomposition method for solving linear and 

nonlinear fractional diffusion—wave 

equations, 2011). 

In this paper, rather than using these 

methods, we propose a new numerical 

approach for solving system of partial 
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differential equations of fractional order by 

using discretization and an interpolation 

method. 

The organization of this paper is as follows: 

In Section 2, some theorems are presented 

that will be used in later sections. In Section 

3, the method is discussed. Section 4 is 

devoted to numerical experiments and the 

results are compared with the exact 

solutions. Section 5 is the conclusion. 

 

 

2. Preliminaries 

In this section, we recall the basic 

definitions from fractional calculus and 

some theorems of integral calculus which 

we shall apply to formulate our new 

approach. 

Definition 2.1. (Podlubny, 1999)A real 

function , is said to be in the 

space , if there exists a real 

number  such that 

, where , 

and it is said to be in the space  if and 

only if . 

The Riemann–Liouville fractional integral 

and Caputo derivative are defined as 

follows. 

Definition 2.2. (Podlubny, 1999)The 

Riemann–Liouville fractional integral 

operator of order , of a function 

, is defined as 

                    (2-1) 

Some of the most important properties of 

operator  for 

and 

 are as follows: 

1.  

2. ; 

3. ; 

4. ; 

Definition 2.3. (Podlubny, 1999) The 

fractional derivative of f (t) in the Caputo 

sense is defined as 

 
 

 for 

. 

Definition 2.4. (Mohebbi Ghandehari & 

Ranjbar, 2013)For to be the smallest 

integer that exceeds , the Caputo time-

fractional derivative operator of order 

is defined as 

 
 

Now, we state some theorems of calculus 

and optimization. 

Theorem 2.1. (Mohebbi Ghandehari & 

Ranjbar, 2013) Let f (x, t) be a given 

function and a, b, c, d are constants, and let  

and  be sets of 

supporting points in [a, b] and [c, d] 

respectively, where 

 and 

; then 

 
where and 

, and  are arbitrary 

points in the intervals  ,  and  

 respectively. 

Remark 2.2.  If we choose the same 

distance between support points, we obtain 

the following formula: 
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where     and  are 

arbitrary points in the intervals  ,  

and   respectively. 

Theorem 2.3. (Bazara & Shetty, 1979)Let y 

= f (x) be a convex function on a convex set; 

then any local minimum of f is a global one. 

Theorem 2.4. (Mohebbi Ghandehari & 

Ranjbar, 2013) Consider n convex functions   

; then 

 is also a 

convex function for 

. 

 

3. An approach for solving fractional 

partial differential equations 

 

In this section, we propose our method for 

finding the numerical solution of a system of 

partial differential equation of fractional 

order of the form (1-1). 

Since every interval such as [a, b] can be 

transformed into [0,1]  by a linear 

transformation, we are choosing 

  and 

. 

Let 

  (3-1) 

 are functions and depends on the 

unknown functions , 

so , 

where PC means that they are piecewise 

continuous on the interval [0, 1] × [0, 1]. 

Let  be the numerical solution of (1-

1),  is the error 

function for i-th equation. Then the problem 

of finding the numerical solution of (1-1) 

converts to an equivalent multi objective 

optimization problem, as follows:  

 

                                                                

(3-2) 

 

 

Since 

, 

the equation (3-2) transform to 

 

 

                                 (3-3) 

 

Theorem 3.1. The continuous functions 

 are on 

 are a solution for (1-1); if 

and only if they are the optimal solution of 

(3-3) with zero objective function. 

Proof. Let  are a 

solution for (1-1), which are continuous on 

; then we have 

 

 
 

And hence,  

 

 
Since  and f are 

continuous on their domains, by integrating 
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both sides of the last equation on 

 we obtain 

 

 
 

Hence,  

and this means that 

 are the optimal 

solution of (3-3) with zero objective 

function. For the converse part, let 

 are be the optimal 

solution of (3-3) with zero objective 

function; since, 

 are absolute functions, by using Lebesgue 

integral theorems we have: 

  

 
 

And hence,  

 

 
 

Thus   are the 

solutions of (1-1). 

By Theorem 2.4.   the objective function of 

NLP problem (3-3) is a convex function; 

hence, if zero is a local minimum of (3-3), it 

is also its global minimum. Remark 3.2. 

The accuracy of the results can be 

controlled. For example, if we want the total 

error to be less than a given number , we 

must solve the following multi objective 

NLP 

  

 
 

 

Now, for solving multi objective NLP 

problem (3-3) , by applying theorem  2.2 to 

the double integrals of (3-3) we obtain 

 

(3-4) 

where  are arbitrary points in the 

intervals  and 

respectively, 

,    and 

.  

If the upper bounds in each interval are 

choosing,  :  (3-4)  

changes to: 

                                                                                                         

(3-5)  
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Since,  are 

unknowns, we cannot calculate their 

derivatives and hence, we use the 

approximate equals of theirs as follows:  

Consider n points  in the 

bounded domain [0, 1] and the grid points 

  in the time interval [0, 1], 

where  and  , 

using the Caputo fractional partial derivative 

of order for 

the time fractional derivative in the Eq. (1-

1), we can approximate the time fractional 

derivative as 

 

 
                                                                                                                           

(3-6) 

Since  (3-6) leads to  

 

 

                      (3-7) 

 

On the other hand, the space derivatives in 

(3-5) will be replaced by the following finite 

difference approximation: 

 

 
 

 

                                                                                                                             

(3-8) 

For   and   

and 

Substituting (3-7) and (3-8)  in (3-5), we can 

rewrite (3-5) as follows: 

 
                                                                                                                           

(3-9) 

With discretization of the initial condition 

and boundary conditions, as constraints on 

the objective function we obtain 

 
We are now dealing with an NLP problem 

and can use Matlab software systems to find 

a solution for this problem. 

4. Numerical examples 

In this section, we solve some examples by 

our method and compare the numerical 

results with the exact solutions and some 

earlier work. To illustrate the accuracy of 

the method, we compute the error norms   

and  and Maximum error is illustrate the 

accuracy of the method. 

Example 4.1. Consider the system of 

fractional partial differential equations 

(FPDEs) 

 

 
 

 with the initial conditions 

 
 

The exact solution of this problem is 
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And 

 . 

Now, we can use our method to solve this 

equation. First, the fractional partial 

differential equation is converted into the 

following optimization problem: 

 

 

 

 
Let  and . 

The results are displayed in Tables 1, 2 and 

3 and Fig. 1, which show that the numerical 

solutions agree with the exact solution. 

 

 

 

 

 

 

Fig.1 The exact solution of example 4.1. (a) 

u(x,t) (b) v(x,t) 

 

 
(a) 

 

 

 
 

(b) 
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Table 1. Error norms corresponding to Example 4.1, for  and in the 

interval [0, 1]. 

Time 0.1 0.5 1 

 1.23421e-003 2.3476e-003 5.7684e-004 

 7.3475e-004 7.8603e-004 5.4583e-004 

 

 

Table 2. Absolute errors  of u(x,t) corresponding to Example 4.1, for    

in the interval [0, 1]. 

 t=0.1 t=0.5 t=1 

0.1 3.8765e-004 4.4326e-003 3.4325e-004 

0.2 6.9876e-004 5.4565e-003 5.4536e-004 

0.3 8.3453e-004 5.4454e-003 6.4563e-004 

0.4 1.1254e-003 6.7767e-003 5.6783e-004 

0.5 1.3245e-003 7.5468e-004 6.4563e-004 

0.6 1.4354e-003 8.5421e-004 6.7682e-004 

0.7 2.3456e-003 5.2365e-004 2.3424e-004 

0.8 4.5639e-003 3.4682e-004 4.4536e-004 

0.9 6.7683e-003 4.3521e-003 5.5543e-003 

 

Table 3. Absolute errors  of v(x,t) corresponding to Example 4.1, for    

in the interval [0, 1]. 

 t=0.1 t=0.5 t=1 

0.1 3.7685e-004 4.4532e-003 3.5123e-004 

0.2 5.6754e-004 4.5674e-003 4.1236e-004 

0.3 9.3342e-004 6.5676e-003 6.4312e-004 

0.4 2.1234e-003 6.6007e-003 5.7384e-004 

0.5 1.5436e-003 8.6891e-004 6.5674e-004 

0.6 2.9871e-003 9.1231e-004 7.1231e-004 

0.7 2.4501e-003 4.3434e-004 3.4325e-004 

0.8 3.5643e-003 3.8122e-004 6.6193e-004 

0.9 7.2546e-003 4.5324e-003 6.0013e-003 

 

Conclusion 

In this paper, we propose a new method for 

solving systems of fractional partial 

differential equations. The results show that 

this scheme is accurate and efficient. In this 

work, we just need to use some approximate 

formulas for the derivatives of the unknown 

functions. By using our method, we reach a 

discrete problem. Then, we solve a multi  

 

 

objective nonlinear programming problem 

instead of solving the main fractional partial 

differential equation. 
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