
MAGNT Research Report (ISSN. 1444-8939) Vol.3 (3). PP: 1370-1376

 (DOI: dx.doi.org/14.9831/1444-8939.2015/3-3/MAGNT.167)

Software Quality Assurance: The CMM and XP approach

1
Faheem Ahmad,

2
Agha Urfi Mirza,

3
Burhanuddin Mohammad,

4
Mohammed Abdul Habeeb

1,2,3,4
 Department of Information Technology, Al-Musanna College of Technology

Sultanate of Oman

(Received Jan. 2015 & Published online March. 2015 issue)

Abstract: Software Quality Assurance is an intended and systematic set of activities essential to provide

adequate confidence that requirements are properly established and products or services corroborate to

specified standards. Successful software engineering strongly depends on the delivery of high quality

software. In the present paper, we compare Capability Maturity Model (CMM) and Extreme

Programming (XP) regarding their software quality support in terms of software quality development and

software quality assurance and also we presented Software Quality Assurance Proposed by ISO 9000-3.

1. Introduction

 “Software engineering is the application

of science and mathematics by which the

capabilities of computer equipment are made

useful to man via computer programs, procedures

and associated documentation”.

Thriving software engineering strongly depends

on the deliverance of high quality software. The

support of software quality in a software

development process may be considered as two

facets: one by developing techniques which is

used in the development of high quality software

and the other by developing techniques which

assure the desired quality attributes in the existing

software.

The software quality engineering focuses on the

processes involved in the development and

establishment of software quality. Software

quality engineering includes software quality

development and software quality assurance.

Software quality development consists of

requirements engineering, system and software

design and implementation. Software quality

assurance consists of software quality assurance,

quality management and verification and

validation. Software quality is achieved by three

approaches: testing and static analysis and

development approaches.

The integration of all three approaches is the most

desirable approach.

Software quality assurance is an umbrella activity

that is applied at each step in the process of

building the software. It is a planned and

systematic set of activities necessary to provide

adequate confidence that requirements are

properly established and products or services

confirm to specified standards”. Software quality

assurance is defined as “A planned and

systematic pattern of actions that are required to

ensure quality in software [2].”

Different users think differently about the quality

of software. The end-user expects the software to

help him to do the job faster and easier with

adequate help. The buyer expects 2 the software

to meet the specifications within the contract

terms. The developer attempts to trace defects

and focuses faster development as well as higher

productivity. The maintainer expects software to

be understandable, testable, and modifiable, with

all documentation.

The characteristics of software quality in product

transition reusability, portability and

interoperability. The characteristics of software

quality in product revision are maintainability,

adaptability and expandability. The

characteristics of software quality in product

MAGNT Research Report (ISSN. 1444-8939) Vol.3 (3). PP: 1370-1376

 (DOI: dx.doi.org/14.9831/1444-8939.2015/3-3/MAGNT.167)

operation are usability, security, efficiency,

correctness and reliability. The attributes of

software quality are manageability, efficiency,

safety, expandability, reliability, flexibility and

usability.

There are quantitative as well as qualitative

benefits in maintaining quality assurance. The

Quantitative benefits are reduced costs, greater

efficiency, better performance, less unplanned

work and fewer disputes. The Qualitative benefits

are improved visibility and predictability, better

control over contracted products, improved

customer confidence, better quality, problems

show up earlier and reduced risk.

2. Software quality assurance activities:

 Application of technical methods.

 Software Testing

 Control of change

 Conduct of formal technical reviews

 Enforcement of standards

 Measurement

 Record keeping and reporting

3. Software quality assurance proposed by ISO

9000-3:

ISO 9000-3 is the standard of the ISO

9000 series that is most relevant to software

development and maintenance. Organizations

typically use ISO 9000 standards to regulate their

internal quality systems and assure the quality

systems of their suppliers. ISO proposes a quality

assurance manual that consists of management

responsibilities, a set of measurements, analysis

and improvement activities and required

documentation. An ISO 9000 organization should

have implemented a Quality Management System

(QMS) that is continuously maintained for

effectiveness and process improvement. The

effectiveness of the Quality Management System

should be improved by the use of quality, policy,

quality objectives, audit results, analysis of data,

corrective and preventive actions and

management reviews. The organization defines

and documents its policy which provides the

overall objectives for an effective Quality

Management System. The quality policy should

be relevant to the organization goals and

expectations of its customers. ISO 9000 requires

an organization to plan and perform audits. The

results of audits are communicated to

management and deficiencies found are

corrected.

ISO 9000 states that organizations must establish

adequate statistical techniques and use them to

verify the acceptability of the process capability.

This is also called measurement. According to

ISO 9000-3 “there are currently no universally

accepted measures of software quality”. The

auditors can accept the use of statistical tools or

any consistently collected and used data.

The organization should implement and maintain

documented procedure to initiate corrective and

preventive actions. Corrective action procedures

define the requirements for:

 Reviewing non-conformities including

customer complaints.

 Determining causes of non-conformities.

 Evaluating the need for action to ensure

that non-conformities do not recur.

 Determining and implementing the action

needed.

 Records of the results of action

implemented.

 Review of corrective action implemented.

The SQA manager is responsible for corrective

and preventive actions and a feedback system

should be used to provide early warnings of

quality problems. Preventive action procedures

define requirements for:

 Determining potential non-conformities

and their causes.

 Evaluating the need for action to prevent

occurrence of non-conformities.

 Determining and implementing the action

needed.

 Records of the results of action

implemented.

 Reviewing preventive action

implemented.

MAGNT Research Report (ISSN. 1444-8939) Vol.3 (3). PP: 1370-1376

 (DOI: dx.doi.org/14.9831/1444-8939.2015/3-3/MAGNT.167)

The QMS documentation structure can be

described at five levels:

Level1: is maintained in the form of quality

policy. Level 2: documentation is maintained in

the form of quality assurance manual.

Level 3: consists of quality procedure. Level 4:

contains work instructions.

Level 5: documentation is maintained as

records/reports.

4. Capability Maturity Model:

Software process capability describes the

range of expected results that can be achieved by

the following process [3]. The process capability

of an organization determines what can be

expected from the organization in terms of quality

and productivity. The goal of process

improvement is to improve the process capability.

A maturity level is a well-defined evolutionary

plateau toward achieving a mature software

process. Based on the empirical evidence found

by examining the processes of many

organizations, the CMM suggests that there are

five defined maturity levels for software process.

These are initial (level 1), repeatable (level 2),

defined (level 3), managed (level 4) and

optimizing (level 5). The CMM framework says

that as process improvement is best incorporated

in small increments, processes go from their

current levels to the next higher level when they

are improved. Hence, during the course of

process improvement, a process moves from level

to level until reaches level 5.

5. Software quality assurance proposed by

CMM:

It is well known the CMM describes an

evolutionary improvement path to a mature

disciplined process.

CMM defines key practices to improve the ability

of the organization to meet goals for cost,

functionality and quality. SQA activities are

defined at level 2.

According to CMM the purpose of software

quality assurance (SQA) is to provide the

management with appropriate visibility into the

process being used by the software project and of

the products being built. It is required that the

project follows a return organizational policy for

implementing the SQA.

CMM defines eight activities to be performed as

follows:

 A SQA plan is prepared for the software

project according to documented

procedure.

 SQA’s group activities includes:

o Responsibilities and authority of

SQA group of Resource

requirements of SQA group

o Schedule and funding of the

project.

o Participation in establishing the

software development plan

(SDD).

o Evaluations to be performed.

o Audits and reviews to be

conducted.

o Projects standards and

procedures forming basis for

SQA reviews.

o Procedures for documenting and

tracking non-Compliance issues.

o Documentation to produce.

o Method and frequency to provide

feedback to other related group.

 The SQA group participates in the

preparation and review of the project’s

software development plan, standards and

procedures and audit the software project.

 The SQA group audits designated

software work products to verify

compliance.

 The SQA group periodically reports the

result of its activities to the software

engineering group.

 Deviations identified in the software

activities and software work products are

documented and handled according to

documented procedure.

MAGNT Research Report (ISSN. 1444-8939) Vol.3 (3). PP: 1370-1376

 (DOI: dx.doi.org/14.9831/1444-8939.2015/3-3/MAGNT.167)

 The SQA group conducts periodic

reviews of its activity and findings with

customers SQA personnel as appropriate.

CMM levels key process areas and their

purpose:

5.1 Initial:

This is the starting point for use of a new

or undocumented, repeated process. Little

documentation is necessary if any processes and

procedures take place. Success is only achieved

by the heroic actions of team members.

When to use:

Used for a kind projects of very limited

scope.

5. 2 Repeatable:

The process is at least documented

sufficiently such that repeating the same steps

may be exempted. Enough documentation exists

that the QA process is repeatable.

When to use:

This is used for any project that will be

done again, whether as an upgrade or somewhat

similar variation.

5. 3 Defined:

The process is defined/confirmed as a

standard business process, and decomposed to

levels 0, 1 and 2 (the latter being Work

Instructions).

QA documentation and processes & procedures

are standardized. Templates exist for all

documentation and a QA "system" exists.

When to use:

This is critical for a QA department that

must provide QA for multiple projects. This

avoids reinventing the wheel for each project.

5. 4 Managed:

The process is quantitatively managed in

accordance with agreed-upon metrics. The exact

time & resources required to provide adequate

QA for each product is known precisely so that

timetables and quality levels are met consistently.

When to use:

This requires an existing data set based

on previous QA projects. This level can only be

achieved by well documented experience.

5. 5 Optimizing:

Process management includes deliberate

process optimization/improvement. QA processes

and procedures are understood well enough to be

refined and streamlined.

When to use:

This should be actually used in every

stage. In Level

MAGNT Research Report (ISSN. 1444-8939) Vol.3 (3). PP: 1370-1376

 (DOI: dx.doi.org/14.9831/1444-8939.2015/3-3/MAGNT.167)

5, this is the only thing left to work on.

It would be enlightening to conduct a CMM

assessment of a team successfully practicing XP.

In fact, XP team would achieve a maturity level 2

or better. CMM level 2 is about managing project

requirements and schedules effectively and

repeatedly. XP claims to do just that, using story

cards and a planning game. Thus, the software

engineering goals are worthy and they can even

be implemented with lightweight methodologies

where appropriate. XP is compatible to CMM as

well. Software quality assurance consists of

Software quality assurance, quality management

and verification and validation. Software quality

is achieved by three approaches: Testing, Static

analysis and development approach. The

integration of all the three approaches is the most

desirable approach. A different categorization of

approaches towards software quality regards four

ways to establish software quality: Software

quality via better quality evaluation, better

measurement, better processes and better tools.

Large- scale quality models like Capability

Maturity Model (CMM) or ISO-9001 tend to

form a SQA in terms of a “process police”. SQA

takes care only that the process requirements are

met but does not consider the quality of the

process itself. Instead of SQA in terms of CMM

or ISO 9001 a better solution is to embed quality

evaluation in the development process.

XP require certain adaptations in order to fulfill

CMM requirements specialized maturity models

for XP are introduced by combining Capability

Maturity Model (CMM) with Personal Software

Process (PSP).Therefore, instead of eliciting SQA

in terms of CMM a better solution can be

embedded for quality evaluation in XP .

6. Software quality assurance proposed by XP:

6.1. Iterative software development:

To establish higher software quality, a

software development process has to use an

iterative and incremental development approach.

By using iterative approach a process can gain

more flexibility in dealing with changing

requirements or scope. The Short Releases of the

product force early feedback from the customer

as well as stakeholders which is important for

improvement of overall quality of the software.

XP builds on a very strict iterative approach

limiting the time needed to encounter errors and

forces developers to fix the problem as soon as

possible.

MAGNT Research Report (ISSN. 1444-8939) Vol.3 (3). PP: 1370-1376

 (DOI: dx.doi.org/14.9831/1444-8939.2015/3-3/MAGNT.167)

6.2. Quality as a primary objective:

XP software development process defines

quality as a major objective to improve overall

quality of the software. Quality targets have to be

defined by involving project team members and

customer (On-Site Customer). Thus the quality

goals become achievable and measurable.

6.3. Continuous verification of quality:

This includes extensive testing. Besides

internal unit testing, external acceptance tests

with the customer are needed too, in order to

verify that the product fulfills the needs and

requirements of the customer (Test-Driven

Development).

6.4. Customer requirements:

The requirements of the customer who

normally does not have a deep technical

knowledge have to be considered, so that

developers are able to build an application based

on that information. Thus it is necessary that the

project team understands the customer and his

business. Otherwise it is not possible to

implement the customer needs accurately. XP

teams focuses on the customer needs and

requirements throughout the entire project by

means of communication and by framing user

stories.

6.5. Architecture driven:

Architecture of a system has a major

impact on the overall quality of the product.

Using a simple well-designed architecture allows

easy integration and reuse (Simple Design and

Continuous Integration).

6.6. Focus on teams:

Focusing on team work also effects the

motivation of project members. Seeing everyone

as an equally important part of the project leads to

a high identification of the team members with

the product. Hence the project code is not owned

by any single programmer but owned by the team

collectively (Collective Code Ownership).

6.7. Pair programming:

Better solutions are more likely with Pair

Programming since two persons most likely have

different perspectives of the same problem and

therefore they complement each other in solving

it. This approach saves time and minimizes the

number of errors. This is an explicit practice of

XP.

6.8. Tailoring with restrictions:

Software development process should

rely on core elements. Building on these core

elements the process should adapt practices

(tailoring) according to the project type and

project size (e.g. RDP)

6.9. Risk management:

Risk management enables early risk

mitigation and the possibility to act instead of to

react to problems and risks. A well-defined risk

awareness and mitigation management form

together an effective risk management and is a

key factor in achieving high product quality.

7. Conclusion:

Thus, Practices of XP support software

quality development as well as software quality

assurance. XP require certain adaptations in order

to fulfill CMM requirements specialized maturity

models for XP are introduced by combining

Capability Maturity Model (CMM) with Personal

Software Process. However, much software

quality support is implicitly present in XP

principles.

MAGNT Research Report (ISSN. 1444-8939) Vol.3 (3). PP: 1370-1376

 (DOI: dx.doi.org/14.9831/1444-8939.2015/3-3/MAGNT.167)

References:

1. B.W.Boehm. Software Engineering

Economics. Prentice Hall, Englewood Cliffs,

NJ, 1981. Ward, W.A., and Venkataraman.B,

Some observations on Software quality, in

proceedings of the 37th annual southeast

regional conference (CD-ROM), ACM, 1999,

Article No.2.

2. Microsoft Cooperation: Microsoft Solutions

Framework White Paper, Microsoft Press,

1999.

3. Huo, M., Verner, J., Zhu, L., Babar, M.A:

Software quality and agile methods. In

proceedings of COMPSAC 04, IEEE

Computer Soc., 2004, pp.520-25.

4. Paulk, N.C: Extreme Programming from a

CMM Perspective. IEEE software, vol. 18,

no.6, IEEE, Nov-Dec.2001, pp.19-26.

5. Nawrocki,J., Walter, B.,and Wojciechowski,

A.: Toward maturity model for Extreme

Programming: In proceedings Euromicro

Conference, 2001.IEEE,2001,pp. 233-9.

6. Baker, E.B., Which way, SQA? .IEEE-

Software, vol.18, no.1; Jan.-Feb. 2001; pp.

16-18 [8] ManZoni, L.V.; Price, R.T.:

identifying extensions required by

7. RUP (Rational Unified Process) to comply

with CMM (Capability Maturity Model)

level 2 and 3. IEEE Transaction on Software

Engineering, Vol 29, no.2, IEEE, Feb.2003,

pp.181-192.

8. Pollice, G.: Using Rational Unified Process

for small Projects: Expanding Upon

Extreme Programming. A Rational Software

White Paper, Rational, 2001.

9. Runeson, P., Isacsson, P.: Software Quality

Assurance Concepts and Misconceptions, In

Proceedings of the 24th EUROMICRO

Conference, IEEE Computer Soc, 1998,

pp.853-9.

10. Osterweil, L.J.: Improving the quality of

 Software quality determination processes,

 In, The Proceedings of the IFIP

 TC2/WG2.5 Working Conference on

 Quality of Numerical Software,

 Assessment, and Enhancement, Chapman

 & Hall, London, 1997, pp.90-105.

